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ABS TRACT

The excact inverse scatteririu integral equation of this athor is applied to passive seigyic
artillery location In unilmnndla. It is shun that for suchrredia this integral equation
need not be solved, since a tim-space display of the effectal field spatially and terporal ly
locates the irpulsive sources. Nu~mrico-experintntal verification is presented.
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SECTION I

INTRODUCTION

In section II the Rayleigh surface wave equation is reformulated into an inhomogeneous

free-space wave equation with a source term depending on an arbitrarily chosen reference

velocity. In section III the exact inverse scattering integral equation of this author

is rederived and applied to this inhomogeneous free-space Rayleigh surface wave equation.

The physical meaning of the effectal field is discussed in section IV. Specifically, that

this effectal field consists of the destructive interference between the true causal field

and a fictitious anti-causal field, both propagating at the reference velocity, and that

if the true field contains inpulsive sources, then the effectal field also contains inpulsive

sources at the same spatial and temporal locations. A graphic time-space display of the

effectal field thus yields the correct temporal and spatial locations of the irpulsive

sources, obviating the need for a solution of the inverse scattering integral equation for

the case where only these locations are needed, and the unknown medium velocity is not

needed. In section V the two dimensional inverse scattering integral equation is reformulated

in the time donctin; further illustrating the physical neaning of the effectal field. Nunerico-

experimental results are presented in section VI.

A closed form solution of a more general exact inverse scattering integral equation, developed

under a separate contract, is presented in the appendix section IX. Nunerico-experimental

verification of this solution is also presented in section VI.

In light of these numerico-experimental results, recomnendations for future research are

made in section VII.
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SECTION II

REFORMULATION OF THE RAYLEIGH SURFACE WAVE EQUATION

The two-dimensional Rayleigh surface wave equation in the frequency domain is

V24 + k = 0 (1)
r0

where

k= (2)
r v r (X,w)

and where the velocity Vris related to the shear modulus V and the mass density 0 by

V = 0.9194 (3)

Next, let a potential V and a source density P be defined respectively in terms of

an arbitrarily chosen reference velocity C as

W2 w2

V(X,w) 2 -V 2  
' (4)

r
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The wave equation (1) thus becomes the inhomogeneous wave equation

v + ko -p ,(6)

subject to the constitutive equation (4).



SECTION I I I

THE INVERSE SCATTERING INTEGRAL EQUATION

In this section the inverse scattering integral equation of this author [I] will he ,

rederived. This integral equation has been discussed and studied extensively hy

this author 121 - 17] and others 18] - [28].

Let a field +, satisfy the inhomogeneous wave equation

V2 - = - (7)

Furthermore, let G be the free-space (relative to v=c) Green's function for (7),

which satisfies the inhomogeneous wave equation

V2G + k'G = - , (8)

and the Sommerfeld radiation condition at infinity.

next, let H be the iraginary part of the Green's function G; i.e.,

H - im 0 (9)
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It thus follows from (8) that this imaginary part of the Green's function satisfies

the homogeneous wave equation

VH + k2H = 0 (10)

Next, let the effectal field 0 (the term "effectal" will be explained and justified

in section IV) be defined as

--f dS.( VH - H 7¢)

where S is the surface on which the field is known, and where the support of the

unknown sources P is inside this surface S.

By Green's theorem, (11) reduces to

0 :fdv( V2 H - H V72 ) (12)

V

which, by (8) and (10), further reduces to

6 : fv [ ¢ (-k 2 H) - H (-k 2 #-p) ] , (13)

Sfvdv H 6 (14)

The unknown sources p in the volume V are thus related to the known effectal field 0 in

the volume V by the proper (i.e., x and x'eV) Fredholm integral equation of the first

kind; where the effectal field 0 in the volume V is computable from knowledge of the

field ¢ on the surface S by (11).
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SECT ION IV

TIlL PHYSICAL '.MEANING OF THE EFFECTAL FIELn

The i-maginary part of the Green's function can he written as

4 -- ( - * (1 !

Since the Green's function is causal, it follows fram the Fourier transform relationsh in

Grwr/ C - I r t - r/lc fl

that

3 r / - (rt+r/ ) (1 7

It thus follows from (15) that

H(r,w) 4-- - [ ] r~tr; - q (r,t+r'c ] lJ

In the time domain, the effectal field ' is thus by (14) and (19)

6



X, t 2;[ r, t -r -- q r * r (I

rJ

V

rhe first convolution on the right hand side of (10) is clearly the real physical time-

retarded causal field Ax,t) radiated by the sources o (x,t). The second integral

on the right hand side of (10) is, however, a fictitious time-advanced anti-causal

field "radiated" hy the sources , (x,t). The effectal field 'i(x,t) is thus an imapinarv

field due to the destructive interference between the time-retarded causal field andi

the fictitious time-advanced anti-causal field.

Examination ot 4), (5), and (19) readily reveals that if the field contains spAtial ly

and te orally inpulsive sources, then the effectal field will also contain these irnp'jlsive

sources at the correct spatial and temporal locations. A graphic time-space display of

the effectal field will thus yield these correct spatial and temporal locations, obviating

the need for a solution of the inverse scattering integral equation (19) for the case where

only these locations are needed.
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SECT ION V

THE IWO-01"IENSIONAL EFFECTAL FIELD IN THE TIMIE 1))fIAV

In the frequency dormain, the two-dimensional Green's function is

HM(- (20)
4 r

J i(kr) + iY (kr) ](21)
Y 0 (kr) + - 0 ( k-ri (22)

Thus, in the frequency domuain, the imaginary part of the two-dimensional Green's function is

[A TM C (23)

- J (kr)4 0 (24)

I n the t ime dona in, the "imagi nary par t" of the two-dimens ionalI Green's funct ion becories

h f - d. (25)

which, with the aid of the integral representation of the Ilessel functions



zT Cos

J (z) = e cos no de (26)

0

yields

o r

fLW(t Co

jhe c 2f COS do dw (27)

which, in turn, with the aid of the delta function representation

00

6(t) = 2  -fe w~t d, (28)
21T

reduces to

h f 6 Cos 0) do (29)

C

Introducing the change of variable

Z Cos (30)
C

yields for (29)

r

I C 6(t-z)
h -(£,.' - dz , (31)

r ,s( - 2  2

C

which yields

9



]f r t

- r

(32)

It is now of interest to corroare (32) with the full two-dimensional Green's function in=

tle time ,lnain given by 129I

< r

In the time donain, the two-dimensional inverse scattering integral equation (14) is thus

f f nX-x',t-t') o(X',t') dt' dv' O(X,t) (34)

As previously indicated, examination of (4), (5), and (34) readily reveals that if the I

field contains spatially and temporally impulsive sources, then the effectal field will

also contain these impulsive sources at the correct spatial and temporal locations.

Agraphic time-space display of the effectal field will thus yield these correct spatial

and temporal locations, obviating the need for a solution of the inverse scattering

integral equation (34) for the case where only these locations are needed.
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SECTION VI

NU 4ERICO-EXPERIMENTAL RESULTS

A two-dimensional surface with a unity normalized Rayleigh surface wave velocity was

selected. A spatially and temporally irnpulsive source wis placed in this surface,

and an analytic expression for the radiated field was obtained for all points on the

boundary of a 128x128 data grid containing this source. The effectal field at all

points in the grid was numerically computed by (11) for 256 frequencies, with a reference

velocity c=2 (i.e., 100(o off the correct velocity). Next, a fast Fourier transform

of the effectal field into the time domain was taken. A graphic time-space representation

of every fifth point for t=-5 to t=70 of this effectal field is shown on page 13.

As shown in section V, the correct temporal and spatial locations of the impulsive source

are obtained (see t=O frame); however, as anticipated, the effectal field "flies in"

and "flies out" at twice the correct velocity.

The preceeding numerical experiment was repeated with a random zero db. signal to noise

added to the radiated field prior to the corputation of the effectal field by (11).

A similar graphic time-space representation for this computation is shown on page 13.

Again, the correct temporal and spatial location of the impulsive source is obtained (see

t=0 frame), and again, as anticipated, the noise corrupted but recognizable effectal

field "flies in" and "flies out" at approximately twice the correct velocity.

When this research was initiated, only the 1973 inverse scattering integral equation of

this author was in existence, and only the implementation of the graphic time-space

representation of the effectal field was anticipated. A more complete inverse scattering

integral equation and its analytic closed form solution (presented in the appendix)

were obtained (under separate contract N00014-76-C-0082) in the latter part of this

research. This solution was numerico-experimentally verified for a point source and

11
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a point source pair separated by 1/5 of a wavelength, under the same conditions as the

time-space representations of pages 13 and 14, except that the implied Hilbert transform

was executed with the aid of the Wiener-Lee transform [301. A graphic representation

of the resulting fields is on pages 15 and 16.

12
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SECTION VII

RECOIIENDATIONS FOR FUTURE RESFARCH

When this research was initiated, only the 1973 inverse scattering integral equation of

this author was in existence, and only the implementation of the graphic time-space

representation of the effectal field was anticipated. The mre carlete inverse scattering

integral equation and its analytic closed form solution presented in the appendix were

obtained (under separate contract N0014-76-C-0082) only in the latter part of this

research. The successful numerico-experimental verification of this new closed form

solution indicates that future research should be concentrated toward this solution;

specifically, but not nescessarily limited to:

1. Investigate and determine which of the various existing numerical Hilbert transform

and Wiener-Lee transform algorithms is best suited for the solution.

2. Investigate and determine the effects of reference slowness sampling density and

domain truncation.

3. Investigate and determine the effects of incomplete aspect angle information and

and input data sampling density.

4. Investigate and determine the effects of input data noise and errors.

5. Make use of the availability of wide frequency band and/or time domain infornation,

for the purpose of overdeternining the problem and reducing the effects of items 1 through 4.

6. Make use of item S when a priori information exists that the medium is non-dispersive.

17
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7. Investigate the feasibility and desirability of casting the exact closed form

solution in the time domain.

8. Extend and generalize the exact closed form solution to tensor field for the full

elastic wave equation.

18
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SECTION IX

APPENDIX

EXACT INVERSE SCATTERING THEORY

NO*T ICE: This appendix consists of the reproduction In its entirety of
this author's report "Exact Inverse Scattering Theory", Pbrch 1980, wtich
was prepared for and supported by the Office of Naval Research, 800 North
Quincy Street, Arlington, Virginia 22217, Under contract ND0014-76-C--0O82.
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APPENDIX ABSTRACT

The concepts of reference wave slowness (reciprocal of velocity) and an

associated free reference space Green's fuction slowness spectrum are
introduced. A modified Kirchhoff surface integral, containing only
the imaginary part of this free reference space Green's function slowness
spectrum, is formulated, yielding an integral equation for the unknown
fields and sources in the interior of a closed surface on which the
(remotely sensed) fields are known. Awell-oosed, analytic closed form

solution of this integral equation is obtained.
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SECTION A-I

INTRODUCTION

Presented is a unified approach and solution to the inverse scattering and inverse

source problems for the inhomogeneous scalar wave equation

v 2
+ 9 - fl(1

subject to the constitutive equation

pV , (2)

and the homogeneous scalar wave equation

W2

v + - = 0(3

C
2 (X,w)

To this end, the single mixed scalar wave equation

W2

V2+ + - P (4)

c2 (XW)

is introduced. From an Inverse scattering Inverse source perspective, (4) reduces

to (1) if the medifn wave velocity c(X, w) Is a known constant and the source is the

24



unknown, and (4) reduces to (3) if the sources -are known to he lero andl t ie .-ilrij-i

wave ye Iloc;i ty X, .)is the unknown.

I t i s argued that the inverse solut ion presented i s an al ternatilve (tIo the iret,

!<irchhoff) integration of the wave equat ion. It I % thus ippr op r i .t 1 -- t'i I

relevant properties of the direct Kirchhoff integrAt ion

if tlile w.i ve eqit i on (1). Spec if icall Iy, the sur f ace i nte~gra I i n i J- eou

%tt&CTrnt relating the field at a field p~int on one silc of the close' surf ie ')r

by all the sour ces on the other siHe of the clIosed sur face, vi a the f ielIds Pr idtic J

these sources on this closed surface. The inverse scattering inverse snurce Prol)!e-

is, however, characterized by both the f ield poi it for the unknowni fiells as Wc'l as it!

the unknown sources being on the same side of the closed surface (on whichI the, r,'I~e

sensing is accornpl ished), for which situation the Kirchhoff surface integral vanislies,

thus rendering this Kirchhoff surface integral useless for the inverse scattering V
inverse source problemi. Armodified Kirchhoff surface integral, which does not stiffe~r

fromn this pathology, is introduced next.

25



SECTION A-Il

THE INVERSE SCATTERING INTEGRAL EQUATION [

Let; be the free reference space Green's function satisfying the inhonogeneous

wave equation

V.

and the Sommerfeld radiation condition at infinity, where v is any arbitrarily chosen

reference velocity.

Next, let an effectal field 0 be defined as

f fs.(; - (7)

S

where

fC. M , (8)

which, by (6), satisfies the homogeneous wave equation

v 2C, + C- 0 (9)
V T (9)

26



By Green's theore-n, (7) reduces to

e f dv ( V2 G. G. V2 0) (10)

V

which, by (4) and (9), reduces to

2W
e = J dv [4<-72 G .) - -,1)

Vf C 2 (X,w)

V

6 ~dv G P + dv G. (12)

f LC2C1,w) v2 J

(which, for the case of a known constant nedium wave velocity c, unknown sources e,

and a reference velocity chosen as v=c, reduces to the earlier inverse scattering

integral equation of this author [1]).

27
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SECION?1 A-I111

SOLUTION OF THE INTEGRAL EQUATION

Let a medium reference wave slowness be introduced and defined as

(13)

rhe inverse scattering integral equation (12), in terms of this reference slowness,

thus i s

V

+ (~Xix 1 [ Xw ] (XI' *) J(14)

V

where in two and three dimensions, the Imaginary part of the free reference space

Green's functions are

G.XxuG 21 J0 (Wro) (5

and

28



; ( l : / - (16 )

respectively, and where X-X

Taking the Iilbert transform of (14) with respect to the reference slowness yielIs

(XX' (, ) , __ _ "

By (15) and (16), with the aid of 12,31 and twice repeated application of 14,51

it follows that

and

_____" ':/Xjx''+ ; ) d ' - j2 r (X X ,1q

in two and three dimensions, but not in one dimension. Where in two and three

dimensIons G is the real part of the free reference space Green's function

c 2 ' ( ix'. ,) - ,( .~ )(20)

I2



and

cos(Wro)G c xlx',W",o 4 T r (21) .

respect ively.

Thus, with the aid of (18) and (19), (17) becomes

f "X,',o') do' fs Wr) = fX,',A) Gp(X',w) dv'

Tt r(Xa

+ ~ ~ ~ ~ W sg r rxx'wo ~(X',.,) Av' (22)
+ g~r XX,,)IC2(X1,W)

V

Restricting (22) to positive non-zero frequencies u), permits its rewriting as the

principal value integral (i.e., excluding integration over X=X')

IJ(_ Ax4±)2 do' P fG(XiXt',wj) p(x',w) dv'

+ P G (XX'W,0) [ 2A,2 02 ] (x',w) dv' (23)
fV I C2(X,,W)

Since the imaginary oart of the free reference space Green's function is not singular

at X=X[ It follows from the addition of (14) and (23) that for positive non-zero

frequencies

30



7- f-' V

+ P C, (X l , 1) [(] , :241
f (X' ,"

V

For the inverse scattering inverse source case of a known constant medium velocity and

unknown sources (i.e., wave equation (1)), (24) reduces, after chosing the reference

slowness ' o, fr , to

fT do + ie(x,w, - p C

~' C V

At that reference slowness, the direct Kirchhoff integration (5) of the wave equation

(1) can be written as

.(xw)= P G(xjx',y,,

V

Since in two and three dimensions the Green's function singularity is weak and

removable, and the Kirchhoff surface integral represents the incident field.

Thus combining (25) and (26) yields the solution

X f o(x,)
-() 

=  1 do + i , , - 
( (x ,' (271

For the inverse scattering inverse source case of known zero sources and unknown

medium wave velocity c(X,wj i.e., wave equation (3), (24) reduces, after choosing the

reference slowness o=--, for w>O, to
Co

31



j + [ , (]
= -ox ,:,iX[ ,.o - '

V

A digression concerning the wave equation (3) is now in order. This wave equation

can be rewritten as

W2V2 + C - (29)

where the sources q0 are reference sources relative to the arbitrarily chosen reference

wave velocity c., given by the relative constitutive equation

and the potential Vis a reference potential relative to the arbitrarily chonsen

reference wave velocity c, given by

VO  (31'

It thus follows that (2R) can he written for -0 as

,I f , X ,C
- 1 do I(xw,') = )x - , x, x ,v (32)

C0  V

32
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At this reference slowness., the direct Kirchhoff integration (5) of the wave

equation (29) can be written as

f

since in two and three dimensions the Green's function singular ity is vak and rdmvahle,

and the Kirchhoff surface integral represents the incident field.

Thus, combining (32) and (33) yields the (same as (27)) solution

The sources, potential, and medium wave velocities can he obtained from knowledge of

the fields in a variety of straight-forward manners.

One -light be tempted to attempt to simplify the solutions (27,34) hy applying and

executing analytically the Hilbert transform with respect to the reference slownes

dircectly on the surface integral definition (7) of the effectal field, thuS Oht.11,-

this definition in terms of the principal value of the real part of the free refere',,

space Green's function, instead of the imaginary part of this free reference space -"reen'

function. The fla with such an attaerpt is that on the surface of integration, away tr.,'

the singular point of the real part of the free reference space Green's function, t:he

principal value and the complete singular real part of the free reference space Sreen

function are indistinguishable and identical, and the apnlication of Green's thenrern as

per (7-12) will, by the differentiability and continuity requirement imposed hy ('reen, s

theorem, fail to generate the principal value of the real part of the free reference snaLe

Green's function in the volume interior to the surface of integration, which would have

yielded the desired solution, but generate the full singular real part of the free reference

space Green's function in this interior, which fails to yield the desired solution, and

yield (a slightly modified) version of the integral equation (12), instead of its solution.
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